Generating single microwave photons in a circuit.
نویسندگان
چکیده
Microwaves have widespread use in classical communication technologies, from long-distance broadcasts to short-distance signals within a computer chip. Like all forms of light, microwaves, even those guided by the wires of an integrated circuit, consist of discrete photons. To enable quantum communication between distant parts of a quantum computer, the signals must also be quantum, consisting of single photons, for example. However, conventional sources can generate only classical light, not single photons. One way to realize a single-photon source is to collect the fluorescence of a single atom. Early experiments measured the quantum nature of continuous radiation, and further advances allowed triggered sources of photons on demand. To allow efficient photon collection, emitters are typically placed inside optical or microwave cavities, but these sources are difficult to employ for quantum communication on wires within an integrated circuit. Here we demonstrate an on-chip, on-demand single-photon source, where the microwave photons are injected into a wire with high efficiency and spectral purity. This is accomplished in a circuit quantum electrodynamics architecture, with a microwave transmission line cavity that enhances the spontaneous emission of a single superconducting qubit. When the qubit spontaneously emits, the generated photon acts as a flying qubit, transmitting the quantum information across a chip. We perform tomography of both the qubit and the emitted photons, clearly showing that both the quantum phase and amplitude are transferred during the emission. Both the average power and voltage of the photon source are characterized to verify performance of the system. This single-photon source is an important addition to a rapidly growing toolbox for quantum optics on a chip.
منابع مشابه
Quantum Microwave Radiation and its Interference Characterized by Correlation Function Measurements in Circuit Quantum Electrodynamics
Superconducting circuits provide an attractive architecture for quantum optics experiments in solid state systems. Microwave radiation interacts strongly with individual (macroscopic) quantum systems, and enables to realize emitters of single photons. The statistical property of emitting exactly a single photon as information carrier makes these emitters relevant for quantum communication and i...
متن کاملImplementation of Traveling Odd Schrödinger Cat States in Circuit-QED
We propose a realistic scheme of generating a traveling odd Schrödinger cat state and a generalized entangled coherent state in circuit quantum electrodynamics (circuit-QED). A squeezed vacuum state is used as the initial resource of nonclassical states, which can be created through a Josephson traveling-wave parametric amplifier, and travels through a transmission line. Because a single-photon...
متن کاملFast and simple scheme for generating NOON states of photons in circuit QED
The generation, manipulation and fundamental understanding of entanglement lies at very heart of quantum mechanics. Among various types of entangled states, the NOON states are a kind of special quantum entangled states with two orthogonal component states in maximal superposition, which have a wide range of potential applications in quantum communication and quantum information processing. Her...
متن کاملConcurrent remote entanglement with quantum error correction against photon losses
Remote entanglement of distant, noninteracting quantum entities is a key primitive for quantum information processing. We present a protocol to remotely entangle two stationary qubits by first entangling them with propagating ancilla qubits and then performing a joint two-qubit measurement on the ancillas. Subsequently, single-qubit measurements are performed on each of the ancillas. We describ...
متن کاملAbstract for an Invited Paper for the MAR09 Meeting of The American Physical Society Controlling Photons, Qubits and their Interactions in Superconducting Electronic Circuits1
for an Invited Paper for the MAR09 Meeting of The American Physical Society Controlling Photons, Qubits and their Interactions in Superconducting Electronic Circuits1 ANDREAS WALLRAFF, Department of Physics, ETH Zurich A combination of ideas from atomic physics, quantum optics and solid state physics allows us to investigate the fundamental interaction of matter and light on the level of single...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature
دوره 449 7160 شماره
صفحات -
تاریخ انتشار 2007